
NASA

!

Z

CONTRACTOR

REPORT

C

N ASA-CR 2662
!

I

Ur
=.t •

A NUMERICALLY EFFICIENT

FINITE ELEMENT HYDROELASTIC ANALYSIS

Volume 1: Theory and Results

Robert N. Coppoiino

Prepared by

GRUMMAN AEROSPACE CORPORATION

Bethpage, N.Y. 11714

[or Langley Research Center

t_r mNATIONAL AERONAUTICSAND SPA_.:-ADMINISTRATION WASHINGTON,0. C. • APRIL 1976



|

|

i
i

!
][ .........
Ir ..............................................

!
|
_i

!

z

!
_k

i ...........................................

|
IE

|



I. Report No, 2. Government Acc_sion No.

NASA CR-2662

4. Title and Subtitle

"A Numerically Efficient Finite Element Hydroelastic Analysis"

Volume I: Theory and Results

7. Author(s)

Robert N. Coppolino

9. Performing Organization Name and Addre_

Grumman Aerospace Corporation
Bethpage, New York 11714

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date

Apri I 1976

6. Performing Organization Code

8. Performing Organtzation Report No.

10. Work Unit No.

'11. Contract or Grant No.

NAS1-10635-21

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15, Supplementary Notes

Langley Technical Monitor - Larry D. Pinson
FINAL REPORT

i 16. Abstract

Symmetric finite element matrix formulations for compressible and incompressible hydroelasticity are
developed on the basis of Toupin's complementary formulation of classical mechanics. Results of
implementation of the new technique in the NASTRAN structural analysis program are presented which
demonstrate accuracy and efficiency.

17. Key Words (Sugg_ted by Author(s))

Hydroelasticity, NASTRAN, Complementary energy,
fluid-structure interaction

18. Distribution Statement

Unclassified - Unlimited

Subject Category 39 Structural Mechanics

19. Security Cla_if, (of this report] 20, Security Classif. (of this _)

Unclassified Unclassified

21. No. of Pages 22. Price"

104 $5.25

"For sale by the National Technical Information Service, Springfield, Virginia 22161





Volume I

FOREWORD

The work described in this report was performed at the Grumman Aerospace

Corporation, Bethpage, New York, and administered by the Vibration Section of the

Structures and Dynamics Division, NASA Langley Research Center, Hampton,

Virginia.

The work performed under NASA Contract NAS1-10635-21 with supplementary

funding provided by the Space Division, Rockwell International (POM3WXMZ-483002)

included development of a fundamental finite element hydroelastic formulation appli-

cable to NASTRAN, implementation of the theoretical developments into NASTRAN,

and verification and demonstration of the new technique on various problems including

the 1/8-scale space shuttle external tank model.
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ABSTRA C T

A finite element hydroelastic analysis formulation is developed on the basis of

Toupin's complementary variational principle of classical mechanics. Emphasis is

placed on the special case of an incompressible fluid model which is applicable to

propellant tank hydroelastic analysis. A concise fluid inertia representation results

from the assumption of incompressibility and the hydroelastic equations reduce to a

simplified form associated with non-fluid filled structures. The efficiency of the

incompressible hydroelastic formulation is enhanced for both fluid and structure by

introduction of harmonic reduction as an alternative to Guyan reduction. The

theoretical developments are implemented in NASTRAN and the modified NASTRAN

hydroelastic analysis technique is verified and demonstrated as an efficient and

accurate approach with a series of illustrative problems including the 1/8-scale

space shuttle external tank.

iv



Volume I

(A), Aik

B

(C), Ci]

E

F

(G)

(Gin)

("Ix)

In \'_-_- /

(K), mj

K T

(L), Lij

L C

(M)

M 0 , M z

N O , N z

P

p_

pn (cos 0 )
m

List of Symbols

generalized area matrix, generalized area matrix component

(Eq. 2.1-11)

fluid bulk modulus (Eq. 2.1-2)

compliance (flexibility) matrix, compliance matrix component

(Eq. 2.1-10d)

structural elastic modulus

force

matrix defined in (Eq. 2.3-21c)

multipoint constraint matrix (Eq. 3.1-4)

identity matrix

modified Bessel function (Eq. 5.1-7b)

stiffness matrix, stiffness matrix component

material thermal conductivity (Eq. C-4)

inertance matrix, inertance matrix component (Eq. 2.1:-10c)

complementary Lagrangian function (Eq. 2.1-6b)

mass matrix

cylindrical shell bending moment resultants (Eq. 4.1-6)

cylindrical shell membrane stress resultants (Eq. 4.1-6)

pressure

pressure deviation (Eq. 2.3-15)

associated Legendre function (Eq. 4.1-2)
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List of Symbols (Cont)

PO static pressurization level (Eq. 4.1-I0)

Po(ri, zi) , PK(ri, zi) , P_((ri, zi) - harmonic distribution pressure components

(Eq. 3.1-1)
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generalized impulsive force (Eq. A-14)

hemisphere radial dimension (Fig. 4-1), cylindrical shell radial

dimension (Fig. 4-4)

surface area (Eq. 2.1-5)

kinetic energy function (Eq. 2.1-4a)

complementary kinetic energy function (Eq. 2.1-4b)

potential energy function (Eq. 2.1-4b)

complementary potential energy function (Eq. 2.1-4b)

volume

complementary work function (Eq. 2.1-5)

cylindrical shell axial dimension (Fig. 4-4)

surface heat flux per unit area (Eq. C-4)

shell thickness (Fig. 4-4)

particle inertance (Eq. A-2)

meridional wave index (Eq. 4.1-2)

effective fluid mass (Eq. 4.1-9b)

particle mass (Eq. A-I)

effective structure mass (Eq. 4.1-9c)

circumferential wave index (Eq. 4.1-2)

surface outward normal unit vector
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List of Symbols (Cont)

generalized displacement variable (Eq. A-18b)

radial coordinate in cylindrical reference frame (Fig. 3-1a)

position vector in a Newtonian reference frame (Eq. A-l)

time

displacement, displacement vector

axial coordinate in cylindrical reference frame (Fig. 3.1)

temperature

matrix defined in Eq. 2.3-21b

fractional frequency error (Table 3.1)

fractional frequency squared error (Table 3.1)

nondimensional frequency; for hemisphere see Table 4-1; for

cylinder see Fig. 4-7

stKfness constant for hemisphere (Eq. 4.1-1)

circumferential coordinate in cylindrical reference frame

(Fig. 3. la); meridional angle in spherical reference frame

(Fig. 3. lb)

Poisson's ratio (Eq. 4.1-10)

radial coordinate in spherical reference frame (Fig. 3. lb)

fluid density

structural density

circumferential coordinate in spherical reference frame

(Fig. 3. lb)

circular frequency

empty circular cylinder natural frequency (Eq. 4.1.9a)
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List of Symbols (Cont)

P

E
ITin

operators :

d( )

V'( )

V( )

a( )

6( )

A
( )

( )

Subscripts

( )e

( )f

( )i

( )s

pressurized empty circular cylinder natural frequency

(Eq. 4.1.10)

total differential

divergence

gradient

partial derivative

variation
t

total impulse, f (

--¢0

d(
time derivative, dt

) dt

externally applied

"fluid" or "free surface" as specified in text

"internal" unless used as an index

"structure" or structural surface as specified in text
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1 - INTRODUCTION

The increasing complexity of launch vehicle configurations, particularly in the

caseof the space shuttle, recently has stimulated considerable interest in the dynamic

behavior of liquid filled tanks. The task of Pogo prediction and suppression, for ex-
' ample, requires very complete and accurate mathematical models for the calculation

i of propellant tank hydroelastic modes in the Pogo-susceptible frequency range (2 - 50

Hz for the space shuttle).

A variety of automatic fluid modeling techniques has been under development

ranging from finite element and finite difference techniques to approximate analytical

approaches taking advantage of the properties of the fluid velocity potential and the

consequences of Green's theorem (Refs. 1-5). The available hydroelastic analysis

methods although in most cases theoretically rigorous, contain serious deficiencies in

computational economy and/or numerical accuracy. For example, the NASTRAN hy-

droelastic analysis technique as formulated in the level 15 series is deficient in

computational economy primarily because of an unsymmetrical eigenvalue problem re-

suiting from the use of mixed pressure and displacement generalized coordinates.

In the NASTRAN hydroelastic formulation, the fluid coefficient matrices are in-

terpreted according to a structural analogy. The fluid pseudo-mass and pseudo-

stiffness matrices of that formulation are recognized herein as flexibility and inverse

mass matrices, respectively, on the basis of the complementary principle in mech-

: anics known as Toupin's principle (Ref. 6). This revised interpretation is central to the

formulation of the hydroelastic problem presented here.

This report consists of a theoretical development, a description of NASTRAN

program modifications, a program with which some familiarity is assumed, and a se-

ries of illustrative hydroelastic problems demonstrating the accuracy and efficiency of

the present formulation. The theoretical sections include a derivation of the NASTRAN

fluid matrix equations on the basis of ToupinWs principle, a symmetric formulation for

compressible hydroelasticity and a symmetric kinematic formulation for incompressi-

ble hydroelasticity. The incompressible formulation, particularly applicable in the

study of propellant tank dynamics, provides a description of fluid inertia in terms of

bounding surface displacements alone. This description represents a drastic reduction

in system variables. In addition, harmonic reduction is introduced as an efficient

alternative to Guyan reduction for geometrically axisymmetric structures to further
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reduce the number of system variables. Detailed theoretical discussions in the appen-

dices include a derivation of Toupin's principle and the proposed utilization of polyhe-

dral heat conduction elements in NASTRANas fluid elements (according to a heat

conduction-incompressible flow analogy)to accommodatethe analysis of asymmetric
fluid geometries suchas a tilted free surface.

Volume II (Ref. 7) consists of detailed information pertinent to the

NASTRANprogram. Included is a description of NASTRANprogram modifications,
basedon the abovetheoretical developments, consisting of DMAP modifications re-
quired in the calculation of fluid matrix dataand in the calculation normal modes for

fluid-filled structures with andwithout the effects of static pressurization. Special
input bulk data considerations are discussed as an aid to the NASTHANuser. Bulk

data listings for the illustrative problems are presented in the appendicesand serve
as supplementary user information.

A series of illustrative hydroelastic problems are presented in the final sec-
tions of this report. They have been chosento verify the reformulated NASTRAN

hydroelastic analysis andto demonstrate its economy. Exact analytical andavailable

test results were used as verification data for the NASTRANanalysis. The relatively
complex 1/8-scale space shuttle external tank model is included with the illustrative

examples in spite of a lack of totally satisfactory correlation with experimental data.
Correlations with exact analytical results and experimental results for all other illus-

trative examples, however, are excellent and it is concludedthat the formulation of

this report is an accurate and efficient operational approach.

1-2
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2 - THEORETICAL DEVELOPMENT

The class of problems considered in the NASTRANhydroelastic analysis tech-

nique consists of the interaction of irrotational, inviseid, compressible fluids with
flexible structures for which both fluid and structural motions are assumed smalI

compared to overall dimensions. The approach used to describe the dynamics of the

fluid is a finite element technique. "Mass" and "stiffness" matrices are formed on

the basis of a constructed energy principle with pressure taking the role of general-

ized displacement and boundingsurface displacement taking the role of the forcing
function. The dynamics of the structure is described in the usuaI way with displace-

ment taken as the dynamic variable and applied pressure taken as the forcing function.

The assembled set of hydroelastic dynamic equations consists of coupled fluid pressure

and structural displacement matrix relationships containing unsymmetric coupling
terms as a result of the mixed set of variables. The unsymmetric form of the

NASTRANhydroelastie equations leads to considerable analytical andnumerical diffi-

culty.

2.1 DERIVATION OF THE NASTRAN FINITE ELEMENT FLUID REPRESENTATION

The NASTRAN fluid equations are derivable on the basis of a complementary

variational principle introduced by Toupin in 1952, Ref. 6. The physicai interpreta-

tion of the fluid matrix relationships on the basis of this principle provides the insight

required to resolve the difficulties present in the NASTRANformulation. (A detailed
derivation and discussion of Toupin's principle and its consequencesis presented in

Appendix A).

The equation of motion of a fluid particle is

(2.1-1)

The constitutive relationship for an inviscid, compressible fluid is

P = - BV-U (2.1-2)

where V.U represents the dilitationalstrain. In order to obtain a fluidvelocity ex-

pression, with Pf taken as a mean fluid density, the equation of motion Eq. 2.1-1 is

integrated resulting in

i

_ 1__ V P (2.1-3a)
U= pf

2-1
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where P is the pressure impulse

^S tP = P dt
-00

(2.1-3b)

or

h
P = P (2.1-3c)

The usual expressions for kinetic and strain energy may now be expressed in terms of

impulsive pressure as

f f(" :" ½f1 _ U)dV 1 A AT T
c = _ P ' = _f(VP •VP) dV (2.1-4a)

V V .

½f ½f 1 _ dV (2 1-4b)U = V = B(V._)2dV = B- ( )2C
V V

The motion dependent and impulse dependent energy expressiofis are generally not

equivalent; they are equivalent, however, for linear systems. The complementary

virtual work performed by boundary surface displacements, U*, is

_w : _6_'(_* ^c .r_ )dS

The complementary form of Hamilton's principle due to Toupin is

ftl it 1L dt 6W cdt = 0
to e to

with

(2.1-5)

(2.1-6a)

L c = T c- U c (2.1-6b)

The expression of the principle in the present application is

ftl {1 vf[__pf^ ^ 1 A 21 } 6ftlf =, ^ A6 (VP. VP) - _-(P) dV dt + (U - n ) 6 P dS dt = 0 (2.1-7)
to to S

Upon utilizationof Green's theorem, integrationby parts, and rearrangement of terms
A

the finalexpression (taking (}P = 0 @ t= to, tl) is

ft_[fv(l'X-_f 2:_) ^ /S(-_f A ^ U*)6 ] dt 0
_p_ 1 V _PdV+ VP .#7 + " _ds = (2.1-8)

2-2
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and by setting the integrands to zero the well known field equation and natural boundary

conditions for an inviscid, incompressible fluid result which are

-_- - _-fV = V (2.l-9a)

A A

IJ*= - 1__17_' _ or P prescribed on S (2.l-9b)
n Pf

The usefullness of the complementary principle lies in approximate analysis rather

than in the derivation of fieldequations. Consider an approximation of a fluidpres-

sure (impulse) state in terms of a finiteset of variables. The fluid complementary

kinetic and strain energies are the quadratic functions

1 A ^

T = -_ _ _ LijP. P. (2.1-10a)
c i j t j

1 AA
= p.p. (2.1-10b)Uc _ _'_ Cij t j

i j

with the symmetric inertance matrix defined as

8 2T
L.. - c (2.1-10c)

lJ 8_. AOP.
1 3

and the symmetric flexibilitymatrix defined as

8 2U

C.. = c (2.1-10d)
ij 82. 8_.

1 ]
1

The elements of the inertance matrix are proportional to _, and the elements of the

1 . The complementary virtual work is ex-
flexibility matrix are proportional to

pressed as

A

I A(SWc = ,_ lJ* .n/X dS OP. (2.1-11a)

i L SOPi t

For the special case in which the surface displacements are physically discretized the

complementary virtual work may be expressed as

A

(]W c = Z /_ Aik IJ_(SPi (2.1-11b)
k i

2-3
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with the generalized area matrix defined as

• k_U k

Substitution of Eq. 2.1-10 and Eq. 2.1-11 into Eq. 2.1-6 with the appropriate

integrations by parts results in the complementary Euler-Lagrange equations

^ )< .

By taking the time derivative of this expression noting Eq. 2.1-3c, the Euler-Lagrange

equations become

2(LijPj+j CijPjI=- _AikU_ (2.1-12b)

This is the form of the fluiddynamic finiteelement equations for individualele-

ments and stacked systems of elements in NASTRAN. In the case of a stacked system

of elements the matrix Aik represents only bounding surface generalized areas and u_

represents discrete surface displacements. The pressures Pj comprise the set of

boundary surface and internal pressures; therefore the matrix Aik is rectangular. The

physical interpretations of the matrix quantities,however differfrom the interpreta-

tions in the NASTRAN theoretical manual. The Cij matrix is a flexibilitymatrix and

the Lij matrix is an inverse mass matrix (see Appendix A). This point is realized with-

out interpretationof Toupin's principle by examination of two special illustrative

cases. Consider firststaticdeformation (Tc-*-0)in which Eq. 2.1-12b takes the form

2 Cij P. = - ,_ AikTJ_ (2.1-13a)
j J k

which twice integrated is

,_ Cij P. = - _ AikU _ (2.1-13b)
j J k

2-4
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The matrix C.. is recognized as a flexibility matrix in terms of pressure.
U

ther clarification is realized by noting that

Fur-

_l=_J'J =-e e e a*Jc_%*a'k_=-e %_ I_._-,4_
j i k k

where K_k is a stiffnessmatrix relating surface F_ forces and displacements U k. The

seeond speeial ease consists of an incompressible fluid(Cij-.-0)in which Eq. 2.1-12b

takes the form

°.

Lij pj = - ,_ AikUk (2.1-15)
j k

The inertance matrix, L.. must contain one singularity. This singularity, which will
U

be discussed fully in Section 2.3, is due to the fact that an incompressible fluid under

uniform pressure does not deform. It is however apparent in Eq. 2.1-15 that the in-

ertance matrix, as in the case of the flexibility matrix Cij, is an inverse "mass-type"

matrix.

2.2 A SYMMETRIC FORMULATION FOR COMPRESSIBLE HYDROELASTICITY

The formulation presented in the NASTRAN theoretical manual utilizes the Corn-

plementary Euler-Lagrange equations for a fluid

and a standard set of structural dynamic equations

<2.2_1b,
The above are combined to form the unsymmetric set of hydroelastic equations

-
(2.2-2)

2-5
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Considerable numerical andanalytical difficulty has beenencounteredby NASTRAN
users dueto the unsymmetric form of theseequations.

An alternate symmetric formulation is derivable by the complementary principle
or by manipulation of the structural dynamic equations. Taking the latter approach,

the internal structural generalized forces, Fs, are related to the structural displace-
ments, U, according to

Supposethat Ks
forces is therefore defined as

Substitution of the aboveinto Eq. 2.2-1b results in

and premultiplication by the inverse of the structural mass matrix yields

with

represents a supported stiffness matrix; the transformation to internal

( Cs) = (Ks1)

representing the structural flexibility matrix and

(Ls) = (Msl)

representing the structural inertance matrix. Utilizing Eq. 2.2-3b and Eq.

expression for acceleration to be substituted into the fluid Eq. 2.2-1a is

(2.2-3b)

(2.2-4)

(2.2-5a)

(2.2-5b)

(2.2-5c)

2.2-5a the

(2.2-6)

2-6
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and the fluid dynamic equation is rewritten as

The set of hydroelastic equations in terms of force type variables consisting of

Eq. 2.2-5a and Eq. 2.2-7 now takes the symmetric form

" .._./ Lf+ATLsA i -ATLs P
- + ................... " " (2.2-8)s__.e _ \ -_ ! _s- /

The formulation presented here provides a basis for modification of the

NASTRAN formulation for inviscid, compressible fluid hydroelastic problems. The

class of problems of interest in the current work, however, is limited to inviscid,

incompressible fluids interacting with flexible structures and an alternate simplified

kinematic formulation is derivable for this case.

2.3 A SYMMETRIC KINEMATIC FORMULATION FOR INCOMPRESSIBLE HYDRO-

E LASTICITY

The complementary Euler-Lagrange matrix equation set for the special case of

an incompressible fluid (B_0, (Cf)-*-0) in a conveniently partitioned form is

/ ___,__.,,_sL_,, _, /.___,____.__._(_t
t ' i'JJ Lsf ', Lss Ls Ps /zs , ss|l U |

...... ', V--_--//s/
' is ',"ii//Pi! \0 i 0/_ p\ LiflL '

The pressure partitions Pf, Ps and Pi correspond to free surface, structural

interface surface and internal fluid pressure sets, respectively, and the displacement

partitions Uf and U s correspond to the free surface and structural interface surface

displacement sets, respectively. The structural dynamic equation set with applied

fluid pressure loading is in partitioned form

(2.3-1)

o!0 _t_t_;;-]t_;!,,
! o_t_)
"'=

kAsf ', Ass

[Pi)

(2.3-2)

2-7
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where M is the structural mass matrix, K is the structural stiffness matrix and
S SS

Kff, Kfs, Ksf, are additional stiffness matrix contributions resulting from the gravi-

tational potential and possibly ullage pressure fluctuation.

It is obvious from Eq. 2.3-1 that the internal pressures are related to the sur-

face pressures as

and the reduced fluid dynamic equation set in terms of surface quantities only is

(2.3-3)

with

L' Pf =,s:,,,,,...,Ts-.,:s/I;:}(2.3-4a)

(2.3-4b)

The reduced inertance matrix is singular since an incompressible fluid under

uniform pressure does not deform. This singularity must occur ideally in the indivi-

dual finite element inertance matrices as it is a necessary condition for compatibility.

This is analogous to the condition imposed on structural finite elements that requires

no internal stresses under rigid body motion (i. e. singular element stiffness matrices).

There are two approaches to eliminating the uniform pressure singularity; the first is

a general approach and the second is a special case in which part of the fluid surface

is at zero pressure.

2-8



Volume I

In the special ease of zero free surface pressure (gravitational and ullage stiff-

ness negligible) the fluid surface dynamic equation set Eq. 2.3-4a is under the single

point constraints

and the singular pressure state, uniform pressure is removed from the total surface

pressure set. The partitions of Eq. 2.3-4a now reduce to

(2.3-5)

(2.3-6a)

(2.3-6b)

If the free surface displacements are normal to the free surface then the generalized

area coupling partitions are null ((A ) =(0), (A )= (0)). The matrix partition, (Lss),

is not singular due the eonstraint Eq. 2.3-5 and may now be inverted in Eq. 2.3-6b

to form the struetural interface pressure reeovery equation set

Substitution of this relationship into Eq. 2.3-6a yields

• , -1 T {lJs} _f {lJf}(Lfs)(Lss) (Ass) = (A) (2.3-8a)

and since _Uf_ consists of outward normal displacements only the free surface area

matrix is non-singular; thus the free surface acceleration (or displacement) recovery

relationship is

{Uf}= (Aff)-T '(Lfs)(Lss) • -1 T(Ass ) {Us} (2.3-8b)

2-9



Volume I

L

is

The structural dynamic equation set Eq. 2.3-2 under the constraints Eq. 2.3-5

Substitution of the pressure recovery relationship Eq.

sults in

with the symmetric fluid mass matrix formed as

(Mr)= (Ass)(Lss)-I(AsTs)

=(Ass){Ps} (2.3-9)

2.3-7 intothe above set re-

0} (2.3-10a)

(2.3-10b)

Thus in the special case of an incompressible, inviscid fluidwith zero pressure

fluctuationon a free surface, the hydroelastic dynamics problem reduces to a standard

problem in structural dynamics.

Consider now the general case of incompressible fluid/structure interaction in

which the entire bounding surface of the fluid interactswith flexible structure and a

gravitationalpotentialor ullage volume. As in the above special case, all internal

pressures are dependent on surface pressures Eq. 2.3-3 and the resultant reduced

fluid inertance matrix is singular. In the case of a fluidrepresented by discrete sur-

face pressures the normalized uniform pressure state is

Under such loading the surface normal accelerations must be null and the necessary

property of the reduced inertance matrix is

2 L.: = 0 (2.3-12)
j _J

2-10



Volume I

for all i. The fluid representations in NASTRAN are currently limited to axisymme-

tric geometries in which fluid pressures are described in terms of circumferential

harmonics, e.g.,

N N

= _ PK(ri,'zi)cos K0i + ,_ p_<(ri,zi)sinK0i (2.3-13)
P(r i,0i, zi) K=0,1,.. K=I, 2,..

The fluidfiniteelements are rectangular and triangular solids of revolution and the

generalized pressure degrees of freedom are the amplitudes PK and P_. In this case

the zeroth harmonic (n = O) generalized pressure subset contains the uniform pressure

state and the higher harmonic (n> O) subsets by definitiondo not contain the uniform

pressure state. Thus the discrete pressure considerations described by Eq. 2.3-11 and

Eq. 2.3-12 hold for the zeroth harmonic. The singularity in the reduced inertance

matrix is removable by artificiallysetting one pressure to zero (inthe case of gener-

alized harmonic pressures this pressure must be in the zeroth harmonic subset). For

convenience let the pressure partitions {Pf} and {ps} represent the single artificiallyi _

nulled pressure and the remaining pressures, respectively; in addition le.t_Pf} rep-

resent a pressure associated with the fluidfree surface. The artificiallyconstrained

pressure set is denoted as

(2.3-14)

in which the primed set represents pressure deviations from a uniform pressure state

of value, Pf, i.e.,

Psi=Psi- Pf

T (Afs)TAssuming that the area coupling partitions are null ((Asf) =0,

deviations are related to the surface displacements as

(2.3-15)

= (0))the pressure

(2.3-16a)

(2.3-16b)
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Solution for the pressure deviations in Eq. 2.3-16b and substitution of the result into

Eq. 2.3-16a yields the pressure deviation recovery relationship

• -1 T ""
(2.3-17a)

and the displacement recovery relationship

ff fs ss ss.i (2.3-17b)

The above result is equivalent to imposing a kinematic constraint on outward normal

surface flow (incompressibility)

I 0AT-u
SS

(2.3-18)

The companion pressure constraint expression is

r--,--I,o (2.3-19)

Substitution of Eq. 2.3-18 and Eq. 2.3-19 into Eq. 2.3-4a yields the result already

obtained in Eq. 2.3-16b

(ois :!lo L -(,T_)s_s

where the singularity condition is expressed as

(2.3-20a)

(Lff)- (L )(L L f)=(0) (2.3-20b)
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The constraints presented in Eq. 2.3-18 and Eq. 2.3-19 are now applied to the struc-

tural dynamic equation set Eq. 2.3-2 as

(2.3-21a)

where

A-T L / L / -1 A T
(/--)=( ff )( fs)( ss ) ( ss )

(G) = - (L;s)(L;s)-1

(2.3-21b)

(2.3-21c)

The coefficient matrix on the right side of Eq. 2.3-21a reduces to

G T I = (0 I Ass) (2. 3-22)(FAff + Ass Ass)

Substitution of the pressure deviation recovery relationship Eq. 2.3-17a into Eq.

2.3-21a noting Eq. 2.3-22 results in the symmetric kinematic equation set

where the fluid mass matrix is as in the special case, Eq. 2.3-10b

(Mf) = AssLss'-lATss (2.3-23b)

and the hydroelastic stiffness matrix is

(Ks) =FTKff f'+FTKfs + Ksf F+ Kss (2.3-23c)
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Complete displacement recovery is obtained through Eq. 2.3-17b and pressure devia-

tion recovery is obtained through Eq. 2.3-17a. Complete pressure recovery is

achieved by combining the upper partition equation set in Eq. 2.3-2 with Eq. 2.3-17

and Eq. 2.3-19; thus the pressure recovery equation set is

{Pf }= (Af-flKffF+ Kfs ){U s} (2.3-24a)

The general symmetric kinematic formulation developed above is useful in hy-

droelastic analyses for which free surface strain energy and structural strain energy

are equally significant. In most practical analyses involving liquid filled tanks the free

surface strain energy is much smaller than the structural strain energy. Thus low

frequency slosh dynamics is usually approximated with rigid structure, and flexible

Structure/fluid interaction is usually approximated with zero free surface pressure

(the special case first developed in this section).
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3 - HARMONIC REDUCTIONOF GEOMETRICALLY AXISYMMETRIC STRUCTURES

The NASTRAN hydroelastic analysis provides for a description of dynamics of

axisymmetrically configured fluidsin terms of circumferential harmonic pressure

distributions. The distribution of pressure is

P(ri, O i' zi) = Po(ri ' zi)

+ _ _PK(ri, zi)eos k0 i + P_(r i, zi)sin k0 i (3.1-1)
k=l !

The fluid containing structure is described in terms of discrete physical dis-

placements so that the structural representation is not limited to structurally axisym-

metric containers. Coupling of harmonic pressure distributions with discrete strue-

tural displacements in the NASTRAN formulation is not strictly consistent; moreover,

in many cases itis inefficient. When a structure described in terms of discrete dis-

placements is coupled with a fluiddescribed in terms of circumferential harmonics,

inconsistencies may arise iftoo few pressure harmonics are utilized;structural de-

formation shapes associated with higher harmonics not included in the fluidrepresen-

tationwill reflect a lack of fluidinertia loading. Alternatively, when the discrete

structural grid is too coarse to accurately describe the highest harmonic pressure

distributions, large errors in the mode shapes associated with higher harmonics will

be present.

A consistent grid representation is realized by imposing a kinematic set of

constraints on the structure restricting itto deform in circumferential harmonic pat-

terns. For cylindrical coordinates (Fig. 3-1a) the relationships between a discrete

displacement and the harmonic displacement amplitudes are:

N

Ul(ri'Oi' zi)= _k=O [Ulk(ri' zi)c°s k Oi+Uik(ri' zi)sinkOi]
(3.1-2a)
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Fig. 3-1 Cylindrical and Spherical Reference Frames
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(3.1-2b)

U3(ri'0 i' zi) = k=_0 3k(ri' zi)c°s k0 i + U3k(r i, zi)sin k0 i (3.1-2c)

N

U4(ri'0 i' zi) = k=0_ I U4k(ri' zi)sin k0 i + U4k(ri, zi)cos k0 i (3.1-2d)

N

Us(ri' 0 i' zi) : k=E0 [USk(ri, zi)cos k 0i + U_k(ri, zi)sin k0i] (3.1-2e)

N

U6(r i, 0 i' zi) = k=0$ IU6k (ri' zi)sin • ]k 0i + U6k(ri, zi)cos k0 i (3.1-2f)

For spherical coordinates (Fig. 3-1b) the relationships are:

N

Ulk(Pi'0 i'¢ i) = k=0_ [Ulk(Pi'
i)cos k¢ l + U* k¢i ]lk(Pi,O i )sin J

((3.1-3a)

U2k(Pi' 8 i' ¢ i ) =

N

k=0_ [U2k(Pi' 0i)c°s k¢.1 + U2k(Pi, _ i )sin k¢i]
(3.1-3b)

U3k(Pi,0 i,¢ i ) =

N

[U3k( Pi, 0 i )sin k¢ ik--0 + U3k(Pi, O i )cOs k_i]
(3.1-3c)

U4k(Pi' _ i' ¢i ) =

N

IU4k(Pi ,k=0 0 i)sin k_ i + U* ]4k(Pi,O i) cos k_ i (3.1-3d)
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U5k(Pi, 0 i'¢ i ) =

N

IU5k(Pi ,k=0 0 i)sin k¢ i + U5k(Pi,0 i)cos k¢ i
(3.1-3e)

U6k(Pi'Oi'¢i)= k=0"_ 6k(Pi'0i)c°sk_bi+ U6k(Pi,* 0i)sink_b i (3.1-3f)

Symmetric and antisymmetric displacement distributions are represented by un-

starred and starred variables, respectively. It should be noted that all rigid body

motions are represented by the above displacement distributions.

Harmonic transformation of a discrete structural grid is accomplished in

NASTRAN by the use of multipoint constraint (MPC) statements. The harmonic de-

grees of freedom must be accounted for by supplementary grid points (in addition to

the physical discrete grid). The general form of the harmonic transformation is

where U m corresponds to the physical grid degrees of freedom to be transformed,

and U n corresponds to the harmonic degrees of freedom (plus any discrete degrees of

freedom not transformed). The transformation or constraint matrix Gm is composed

of the appropriate sinusoidal functions evaluated at the discrete variable locations in

accordanee with the relationships outlined in Eq. 3.1-2 and Eq. 3.1-3. For a typical

structure with JxK grid points such that there are J meridional rows and K eireumfer-

ential points in a row, the grid "g" set has typically 6xJxK degrees of freedom and the

matrix semibandwidths are 6xK (assuming K<J). Application of the harmonic trans-

formation as a reduction scheme where the number of harmonics, N, is much less than

K results in a U N set of 6xJxN generalized coordinates with matrix semibandwidths of

6xN. If N<<K harmonic reduction represents a radical reduction in the number of de-

grees of freedom as well as matrix bandwidth. Further reduction of the system de-

scription is possible by a small Guyan reduction by choosing the generalized rotation

degrees of freedom and tangential displacements as members of the omitted set of dis-

placements. In such a ease the analysis set consists of JxN degrees of freedom. This

represents a radical reduetion in degrees of freedom by a factor of (N/6K) without a

costly large matrix decomposition typical of Guyan reduction.
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The economy and accuracy of harmonic reduction was first tested on the spheri-

cal capwith uniform thickness illustrated in Fig. 3-2. A nodal grid consisting of 20
circumferential divisions in a semicircle and 10 meridional divisions was chosen

resulting in a 1266DOF "g-set" structural model. Three circumferential harmonics

(0, 1, 2) were chosenfor harmonic reduction. It shouldbe noted that the apexnode is
left in terms of rectangular coordinates since the polar degrees of freedom have no

meaning at this node. After application of the fixed-base boundary condition and sym-
metric kinematic constraints at the pole the reduced representation consists of a 138

DOF "f-set". A small Guyanreduction omitting the non-zero displacements at the

pole and rotational and circumferential generalized displacements yields a 72 DOF
"a-set". At this point, all natural frequencies and the first 15modes were calculated

by the Givens method.

The results of the abovestrategy were then compared to STARS-II (Ref. 8)

results which were assumedexact. In addition, NASTRANresults utilizing various

Guyan reduction strategies illustrated in Figs. 3-3 and 3-4 were compared to the
STARS-II and harmonic reduction results.

A comparison of natural frequency results (Table 3-1) indicates that the overall

accuracy of the 72 DOFharmonic reduction representation is better than the 190DOF

Guyan reduction representation. The quantities ,41 are representative of fractional

frequency errors and A 2, the frequency squared errors, are representative of mode

shape errors. Comparisons of the first two axisymmetric mode shapes illustrated

in Fig. 3-5 indicate that although frequencies are rather accurate, mode shapes may

contain large local errors. Mode shapes resulting from harmonic reduction are

clearly more accurate than those resulting from Guyan reduction.
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Fig. 3-5 60 ° Spherical Cap, Fixed Base Mode Shape Comparisons
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Another aspect of the harmonic reduction technique is its relative efficiency. A

comparision of harmonic and Guyan reduction Central Processor Unit (CPU) times pre-

sented in Table 3-2 indicates a significantly lower reduction CPU time for harmonic

reduction. This is attributed to elimination of a large scale matrix decomposition,

characteristic of the Guyan reduction, and to the fact that fewer degrees of freedom

are required for comparable accuracy (e. g., harmonic 72 DOF-5% accuracy vs. Guyan

190 DOF-12% accuracy). The CPU time associated with eigenvalue analysis of the har-

monic analysis set is naturally much less than that associated with the Guyan reduction

analysis set.

For the current structural model, circumferential harmonics were uncoupled

due to the axisymmetry of shell thickness. In cases where thickness varies with cir-

cumferential location (0) harmonics will be coupled. The degree of coupling is a func-

tion of the relative abruptness or smoothness of thickness distribution and the thick-

ness asymmetry.

A general purpose FORTRAN IV computer program for generation of multipoint

constraint bulk data cards, HARM, has since been written for typically large hydro-

elastic problems, many constraint statements must be prepared. A listing and de-

scription of this program are presented in Appendix A of Volume IX.

Table 3-2 60° Spherical Cap Modal Accuracy/Cost Comparisons (1266 DOF Grid Set)

Reduction Modal Accuracy* Total Central Processor
i Scheme Analysis Set Size (15 Modes) Unit Time (Sec)

Harmonic

Guyan

Guyan

Guyan

72

110

95

190

0.053

0.276

0.149

0.117

238

346

328

531

N

*Error =-_ i,_= 1 [(_,/COSi)2 - tl 2
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4 - NUMERICAL RESULTS

The present hydroelastic analysis has been implemented in NASTRAN and veri-

fied and demonstrated on a number of problems. The problems fall into two catego-

ries, namely, analytical verification problems for which exact solutions are known and

demonstration problems for which experimental data are available. The 1/8-scale

shuttle external tank is included in the second category.

4.1 ANALYTICAL VERIFICATION PROBLEMS

Ex. 1. Fluid Filled Hemispherical Container

This first problem consists of the fluid filled hemispherical container

illustrated in Fig. 4-1. The container is massless and follows the artificial structural

law

P = _ U r (4.1-1)

The exact free vibration solution for this problem is expressed in terms of spherical

harmonics (Ref. 9). The modal displacements on the structural surface and free sur-

face are

U = pn(cos 0)cos n q_ (4.1-2a)
r

respectively.

R) m-1 dP m (cos _ )Ue = d e cos n ¢p

The modal pressure function is
I

( 2n) mm r pn(cos _ )cos

and the natural frequencies are

(4.1-2b)

n (p (4.1-3)
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Fig. 4-1 Fluid in a Hemispherical Container
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Fig. 4-2 Fluid in a Hemispherical Container - Finite Element Model
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w (4.1-4)
in

n
The function Pro(cos 0) is the associated Legendre function for which m is the merid-

ional wave index and n is the circumferential wave index. The allowable indices are

such that the sum m+n must be odd with m > n.

The finite element model of the hemispherical fluid filled container is illustrated

in Fig. 4-2. As a result of the structural law Eq. 4.1-1 the structural stiffness ma-

trix is diagonal with entries

Kii = aA.1 (4.1-5)

where A. is the area associated with the "ith" (radial) degree of freedom. All diago-1
nal entries not associated with radial degrees of freedom are null. The fluid model is

expressed in terms of the circumferential pressure harmonics n =0, 2, 4 and the

structural surface and free surface grids are reduced by harmonic reduction accord-

ingly. The fluid mass matrix developed in the modified Rigid Format 7 version is ex-

pressed in terms of a 21-degree of freedom analysis set of structural radial displace-

ments (7 meridional locations, circumferential harmonics n=0, 2, 4).

Natural frequencies and mode shapes for the finite element model were calcu-

lated in Rigid Format 3 by the Givens method. A comparison of exact and NASTRAN

calculated nondimensional natural frequencies is presented in Table 4-1 and compari-

sons of selected modal displacement distributions are presented in Fig. 4-3. In gen-

eral the finite element results are in excellent agreement with the exact solution; as

expected in any finite element analysis the level of accuracy decreases with modal

complexity.

Ex. 2. Fluid Filled Circular Cylindrical Shell

The second verification problem consists of the fluid filled circular cy-

lindrical shell illustrated in Fig. 4-4. The shell structure is taken as one with bending

as well as membrane stiffness. The geometric properties of the shell consist of a cy-

linder aspect ratio Z/R = 2 and a thickness ratio h/R = 0.01. In addition, the fluid to
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structure density ratio is P f/P s = 1/3 and the structural material Poisson ratio is

v =.3 An exact hydroelastic modal solution is known for an infinitely long cylinder

which holds for the present problem when the structure is subjected to the boundary

conditions

= M 0 N OU r = = N z = 0(shear diaphragm) @ z = Z, r = R (4.1-6a)

P = 0 (free surface) @ z = Z, r<R (4.1-6b)

0U 8M

-__d" =U = _ =N =0 (symmetry) @ z=0, r=R (4.1-6c)
Oz z _ 0

Z

U = 0 (fixed bottom) @ z=0, r<R (4.1-6d)Z

The exact free vibration solution is expressed in terms of cylindrical harmonics

(Ref. 10). The normalized modal displacements on the structural surface (r=R,

0<z<Z) and the free surface (r<R, z = Z) are

mTrz

U r cos 2Z cos n 0 (4.1-7a)

mzr I mzrr
2Z n 2Z

I.U =
z cos n 0

d"-r"In \'-'_-_] r;R

respectively, where I ,m_'r,n (-2-Z-) is a modified Bessel function.

function on the structural surface is

(4.1-7b)

The modal pressure

p

pfw2 I (mrrRtmn n \--_-]

mrt) d /mrrr _-_r In _]
r=R

mTrz
COS n @ cos ----------

2z (4.1-8)
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re, n= 1,0 m'n=3,0 _ m,n=5,0
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Fig. 4-3 Fluid in Hemispherical Container - Mode Shape Comparisons
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Fig. 4-4 Fluid Filled Circular Cylindrical Shell
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Noting that the structural deformation shape Eq. 4.1-7a is the same as for an empty

cylinder the hydroelastic natural frequencies are related to the empty structural fre-

quencies WEmn as

Wmn V/1 += mf (4.l-9a)

m S

where mf and m s represent the effective fluid and structural masses

Pf In \-"_-_--]

mf=fm _r___[1 /mTrr_

2z/dr 2Z
(4.l-9b)

m s = Psh (4.1-9c)

The empty shell frequencies w E
mn

theory (Ref. 11).

are known exactly on the basis of Flugge's shell

The finite element models of the shell and fluid are illustrated in Fig. 4-5. The

structural grid for the quarter shell consists of 924 degrees of freedom and the fluid

grid consists of 165 degrees of freedom (55 nodes of rotation, circumferential har-

monics n = 0, 2, 4). The harmonic transformation retaining harmonics n = 0, 2, 4,

application of single point constraints to enforce boundary conditions, and a small

Guyan reduction retaining only radial displacements ultimately resulted in a 30-degree

of freedom analysis set. Listings of the NASTRAN Rigid Format 7 and Rigid Format

3 data for this problem are presented in Appendix B of Volume II.

All natural frequencies and 25 mode shapes with and without the fluid included

were calculated in Rigid Format 3 by the Givens method. The mode shapes in both

cases were nearly identical to one another as concluded in the exact analysis. Selected

mode shapes for the liquid filled case are illustrated in Fig. 4-6. Frequency spectra

for the empty and fluid filled shells are presented in Fig. 4-7 illustrating excellent

comparison between finite element NASTRAN and exact results in both cases.
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Fig. 4-5 Circular Cylindrical Shell with Fluid - Finite Element Model
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A characteristic of the modified NASTRAN hydroelastic analysis which is as

significant as numerical accuracy is computational economy. On the Grumman IBM

370/165 computer the Rigid Format 3 solution time for the empty cylinder was 2 min.

2 sec; for the fluid filled cylinder the Rigid Format 7 and 3 solution times were 1 rain

15 sec and 2 min 6 sec, respectively. These computation times represent consider-

able cost savings for NASTRAN hydroelastic analysis and empty-structure modal

analysis.

Ex. 3. Pressurized Fluid Filled Circular Cylindrical Shell

The above described fluid filled cylindrical shell is now considered in

a uniformly pressurized state. A closed form free vibration solution in this case

follows Eq. 4.1-6 through 4.1-9 withw P representing the empty pressurized shell
Emn

frequencies. An approximate expression for the adjusted empty shell frequency with

pressurization, Po' (Ref. 10)is

v2  oR[ 1 2Em-------_n-= 1 + n2+
_E Eh 2- -_

mn

(4.1-10)

The mode shapes in the pressurized case are the same as in the unpressurized

case.

A modified version of Rigid Format 13 (normal modes with differential stiffness)

was used to calculate modal data for the empty and fluid filled cylinder representation,

with a pressurization level (1- v2)PoR/Eh=O. 001. The models used for this analysis

and all reductions are the same as for the unpressurized case. The frequency spectra

for the pressurized empty and fluid filled shells are presented in Fig. 4-8 for the n=4

modes only; pressurization caused negligible changes in the n=0, 2 modes. The na-

tural frequencies resulting from the NASTRAN analysis are in excellent agreement

with the results based on Eq. 4.1-10. In addition, as in the unpressurized analysis,

computation times were quite satisfactory. Rigid Format 13 modal analysis CPU

times were 3 rain 2 sec and 3 min 20 sec for the empty and fluid filled cylinders, re-

spectively; approximately 1 min CPU time was required to generate the differential
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stiffness terms in Rigid Format 13. Rigid Format 13data for this problem are pre-

sented in Appendix B of Volume II.

4.2 COMPARISONSWITH EXPERIMENTAL DATA

Ex. 1 Liquid Filled Cylinders Under Static Pressurization

A detailed experimental study of the dynamics of structurally axisym-
metric and asymmetric circular cylinders under various liquid (water) fill and static

pressurization conditions has been conductedat NASA Langley Research Center by

Mr. Robert Herr. Data resulting from these tests (unpublished)are very complete

and serve as excellent information for analysis/test correlation studies. The test

articles are aluminum cylinders with mean radius 25.4 cm and height 50.8 cm. The

cylinder walls are welded at the top and bottom to heavy aluminum plates as illus-

trated in Fig. 4-9. The axisymmetric test article has a cylinder wall thickness of

• 08128 cm and the asymmetric test article has a wall thickness variation around the

circumference 0. 0508 - 0. 1016 according to the equation

h
- 0.75- 0.25 cos 0 (4.2-1)

h
max

The NASTRAN finiteelement fluid and structural grid representations for the

1/2 fillcondition are illustratedin Fig. 4-10. The structural model for a 1/2 cylinder

(0°< 0 <-180 °) is described by a sufficientlyfine grid to simulate the higher circumfer-

entialharmonic shapes (e.g. n = 0-15) which are known a priori from the experimental

results to dominate in the lowest frequency modes. The fluid representation consists

of a fine radial grid near the structural wall to insure simulation of the sharp pressure

gradients in the higher circumferential harmonics; the generalized fluidpressures are

expressed in terms of the symmetric harmonics (cos nO) for n = 0 to 15. The grid set

for the half filledcylinder consists of 480 pressure degrees of freedom and 2,046 struc-

tural degrees of freedom. The structural description in this case is not reduced by

harmonic reduction since allharmonics up to n = 15 are of interest and insignificant

computational economization would be gained by the harmonic transformation.
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The first series of problems studied pertained to the cylinder of uniform thick-

ness. The empty cylinder was first considered with an assumed axial plane of symme-

try at z=25.4 cm such that only re=l, 3, 5 modes would be calculated. The grid set of

1116 degrees of freedom consisting of nodes below z=25.4 cm was reduced by Guyan

reduction to an analysis set of 276 radial degrees of freedom with the base assumed

completely fixed (clamped). The analysis on Rigid Format 13 was performed for the

test conditions of zero pressurization and static pressurization at 5.516x104N/m 2. The

frequency spectrum of m=l, n_>4 modes is illustrated in Fig. 4-11 along with the test

results. The calculated frequency spectrum was higher in both cases than the experi-

mental frequency spectrum. A series of structural model modifications to reconcile

the differences in results were considered and it was finally concluded that axial flexi-

bility in the cylinder/plate weld provided the proper correction. Incorporation of the

boundary conditions

_U
r N = 0 @ z = 0, 50.8 cm (4.2-2)Ur- 8z - z

resulted in extremely accurate frequency spectra for the empty 0 and 5. 516 x 104 N/M 2

pressurization conditions, respectively, as illustrated in Fig. 4-11.

The half filled, unpressurized condition was then considered. The liquid free

surface was described in terms of single point constraints applied to the surface pres-

sures; free surface displacements were not desired as output information. Retaining

only the radial displacements below the free surface in the analysis set a 248 degree

of freedom fluid mass matrix and pressure recovery matrix were calculated with the

modified version of Rigid Format 7. The cylinder structure in this case does not have

a dynamic plane of symmetry at z = 25.4 cm; the lower portion (z <_25.4 cm) is loaded

by the fluid inertia and small structural inertia while the upper portion (z >25.4 cm) is

loaded only by the structural inertia. This provides motivation for Guyan reduction

with all degrees of freedom at and above z =25.4 cm (not including the supported de-

grees of freedom) "omitted". A Guyan reduction on the structure was then performed

resulting in an analysis set consisting of 248 radial degrees of freedom. Hydroelastic

modes based on the clamped and modified clamped Eq. 4.2-2 end conditions were then
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calculated. The m= 1, n>_4 modal frequency spectra illustrated in Fig. 4-11 show

that the representation with the modified end conditions is quite accurate as concluded

in the empty cases. At this point it was felt that a hydroelastic analysis with pres-

surization was not required since enough confidence in the model was gained from the

three cases considered above, A study of the unsymmetric cylinder dynamics was then

initiated.

The unsymmetric cylinder structural model consists of the same grid set as in

the case of the axisymmetric cylinder with circumferential thickness variation. The

hydroelastic study of this cylinder was limited to the half filled condition with 0 and

5. 516 x 104 N/m 2 pressurization and the realistic edge condition Eq. 4.2-2 was ap-

plied. The m= 1 mode shapes calculated in Rigid Format 13 for the unpressurized and

pressurized conditions illustrated in Figs. 4-12 and 4-13, respectively, are in excel-

lent agreement with the test results as are the modal frequencies (presented in the il-

lustrations).

Computation times for the cylinder study were moderate since harmonic reduc-

tion was not appropriate and thus not utilized. In all cases considered, all eigenvalues

and 25 eigenvectors were calculated by the Givens method. Computation times for the

empty axisymmetric cylinder (1116 DOF g-set, 276 DOF a-set) were 509 CPU sec and

524 CPU sec for the unpressurized and pressurized cases, respectively. Preparation

of fluid matrix data in Rigid Format 7 required 97 CPU sec and computation of hydro-

elastic modes (2,046 DOF g-set, 248 DOF a-set)required 1,193 CPU sec and 1254 CPU

sec for the unpressurized and pressurized cases, respectively. The increased CPU

time required is predominantly due to the increased structural grid set size of the fluid

filled cases; the increase in Guyan reduction time for systems of equivalent matrix

bandwidth is proportional to the increase in g-set degrees of freedom. Computation

times for the unsymmetric cylinder were similar to those required for the axisymme-

tric cylinder.

Ex. 2 1/8-Scale Space Shuttle External Tank

An investigation of 1/8 scale space shuttle external tank dynamics in a

free-free supported condition has been undertaken. The 1/8 scale external tank
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consists of two separate propellant tanks connected by a cylindrical section. The finite

element hydroelastic model described in detail in Volume II and Ref. 12 consists of a

grid set of 348 pressure degrees of freedom, 2,058 structural degrees of freedom and

768 harmonic structural degrees of freedom. Harmonics n=0, 1,2, 3 were chosen to

describe asymmetric dynamics with the pitch plane taken as an axis of symmetry.

The analysis set of displacements resulting from a combination of harmonic and

Guyan reductions consists of 128 harmonic degrees of freedom associated with out-

ward normal motion of the tank wall.

Three liquid fill conditions have been studied consisting of liftoff, post max Q

and empty. In terms of liquid height above the respective bulkheads, the conditions

are identified as:

liftoff h LOX=190.5 cm, hLH 2 = 358.14 cm

post maxQ: hLOX=127 cm, hLH2=330.2 cm

empty: hLox=hLH2 = 0 cm

The liquidfree surfaces are taken normal to the tank axis thus ignoring some

free surface tiltto be experienced in flightsince the NASTRAN hydroelastic analysis

is currently limited to axisymmetric fluid configurations. This limitation,however,

can be overcome by utilizationof heat conduction polyhedral finiteelements as fluid

elements according to the analogy presented in Appendix B.

For each of the fillconditions, 128 natural frequencies and 25 mode shapes and

modal pressure distributionswere calculated with very good computational efficiency.

About 20 CPU minutes per liquidlevel on the Grumman IBM 370/165 computer was

required to perform the entire analysis including matrix assembly, reduction and

modal analysis. In previous attempts to study the dynamics of the same finiteelement

representation with the old NASTRAN hydroelastic analysis, computation times were

in excess of 70 CPU minutes with only one natural frequency and mode shape computed.
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Modal data for each of the three fill conditions studied are summarized in

Tables 4-2 through 4--4 with dome pressure gain presented as a measure of relative

significance in Pogo susceptibility. The pressure gain is defined as the dome pres-

sure (LO 2 and LH2) in the vicinity of the feedline interface near the respective tank

bottoms resulting from a unit modal acceleration. Plots of the mode shapes corre-

sponding to the intermediate post max Q fill condition are presented in Figs. 4-14

through 4-35.

Excellent agreement between analysis and experimental frequencies occurred

in the first axial mode but poor agreement occurred in the bending modes. The

source of the discrepency is believed to be in the finite element representation of the

structure and efforts to resolve the discrepency are discussed in Volume II.

Table4-2 1/8-ScaleExternal Tank HydroelasticMode Summary(at Liftoff)

Mode No.

4" 29.7
5 34,5
6* 35.7
7 36.6
8" 54,9
9" 57.8

10" 61.4
11 62.1
12" 63.8
13 68.4
14" 96.0
15" 96.1
16" 109.4
17 114.5
18 117.8
19" 119.7
20* 119.8
21" 124,2
22 128.6
23" 135,0
24" 135.9
25 138.2

LO2 Dome LH 2 Dome
Pressure Gain Pressure Gain

Freq. (Hz) Modal Mass Description of Mode X 103 X 103

4,751
0.857
0.760
0.428
2.667
0.131
0.067
0.395
0.520

ET 1st Axial n=O
LO2 n=2 (No Dome}
ET 1st Bending n=l

LO2 n=3 {No Dome)
ET 2nd Axial n=0

LH 2 Cylinder n=2,3
LH 2 Cylinder n=3,2
LO 2 n=3 (No Dome}
ET 2nd 8ending n=l

0.130
0.003
0.040
0.008

0.067
0.016

0.017
0.011
0.070

0.581
0618
0.433

0.455
0,741
0,277
0,142
0.254
0.221

&062
0.475
0.431
0.589

LO 2 n=2 (No Dome}
LO 2 n= 1
LO 2 n-0
LO2, LH2 n=0
LO2, LH2 n=2,3
LO2 n=3 (No Dome}
LH 2 Cylinder, LOX n-2,0
LO2 n=0

LO 2 n=l
LH 2 Cylinder n=3
L02 n=0
ET. LOX Dome n= 1,0

LO2 n=2

0.002
0,102
0.302
0.155
0.009
0.006
0.085
0.276
0.253
0.002
0150
0,194
0,006

0,034
0.001
0.017
0,005
0.091
0,019
0.034
0.005
0.006
0.003
0,001
0,006
0.028
0.001
0
0,002
0.017
0.003
0001
0,025
0,005
0,002

• Denotes POGO Sensitive Mode

NOTE: Modes 1, 2, 3 are Rigid Body Pitch Plane Modes
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Table 4-4 Empty 1/8-Scale External Tank Mode Summary

Mode No. Freq. (Hz) Modal Mass Description of Mode

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

105.6
153.0
161.7
226.0
257.8
274.7
328.3
332.0
332.8
343.7
357.8
431.0
459.1
472.9
482.2
498.6
513.2
533.1
567.2
604.6
625.4
628.0

0.0425
0.0094
0.0172
0.0497
0.0770
0.0271
0.0122
0.0149
0.0234
0.0118
0.0696
0.0210
0.0615
0.0114
0.0185
0.0076
0.0697
0.0243
0.0487
0.0391
0.0116
0.0144

ET 1st Bending n=l
LH 2 Cylinder n=3
LH 2 Cylinder n = 2, 3
ET 2nd Bending n=l
ET 1st Axial n=0
LH 2 Cylinder n=2,3
LH 2 Cylinder, LOX n=3,2
LO2, LH2 n--3,2
LO2, LH2 n=3,2
ET n=3
ET Bending n=1,3
LH 2 Cylinder n=2
LH 2 Cylinder n=3, ET n=l
LH 2 Cylinder n=3
ET n=2
LO 2 n=3
ETn=I,2, 3
ET n=2, 1
ET n=l, 2, 3
ET n=2, 1, 3
LO2 n=3
ET n=3,2
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5 - CONC LUSIONS

Symmetric finite element matrix formulations for compressible and incom-

pressible hydroelasticity have been developed on the basis of Toupin's complementary

formulation of classical mechanics. The incompressible formulation applicable in

propellant tank hydroelastic analysis has been implemented in NASTRAN to replace

the unsymmetric matrix formulation. The new technique which utilizes existing fluid

and structural finite elements has been verified and demonstrated to be accurate and

efficient.

The fluid representation according to the new technique consists of a symmetric

fluid mass matrix described in terms of surface deformation only and an additional

surface stiffness matrix when gravitational potential and ullage pressure stiffness are

included in the fluid idealization. The fluid mass and stiffness matrices are then

added directly to the structural mass and stiffness matrices, respectively, forming a

symmetric set of hydroelastic equations in terms of structural displacements. As a

result of the extensive NASTRAN structural modeling capability, differential stiffness

effects due to static pressurization and fluid weight may be accounted for in the struc-

tural idealization. Modal hydroelastic analysis is performed with the same efficiency

as in the case of a non-fluid filled structure as a result of very few additional degrees

of freedom being required for the fluid.

The efficiency of the new hydroelastic analysis technique has been enhanced for

both fluid and structure by introduction of harmonic reduction, applicable to geomet-

rically axisymmetric structures, as an alternative to Guyan reduction. When the

number of harmonics utilized is much less than the number of discrete nodes about a

circumference, overall matrix size and bandwidth are significantly reduced. Har-

monic reduction which was developed early in the present study was first demonstrated

on a 60 ° spherical cap exhibiting superior accuracy and efficiency relative to Guyan

reduction for an axisymmetric structure.

The formulation has been verified by comparison with exact analytical results

for a fluid filled hemispherical container, a fluid filled circular cylindrical shell and

a pressurized fluid circular cylindrical shell. In all three cases, excellent correla-

tion was exhibited as well as very good computational efficiency.
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Analysis/test discrepancies on the l/8-scale external tank model have not yet

been resolved. The efficiency of the current 1/8-scale external tank analysis,

however, is very encouraging uponcomparison of computation times betweenthe

present analysis and the standard unsymmetric NASTRANhydroelastic formulation.

Approximately 20CPU minutes of computer time is required to extract 128natural

frequencies and 25mode shapeswith the present analytical technique while more

than 70CPU minutes was required with the standard NASTRANhydroelastic analysis
to extract a single natural frequency andmode shape.

The analysis/test correlation study on symmetric andunsymmetric circular

cylindrical shells under various fluid fill conditions and static pressurization is
considered very good.

It is strongly recommendedthat the present NASTRANhydroelastic analysis be

extendedto include the capability for modeling non-axisymmetric fluid geometries by

use of polyhedral heat condition finite elements. Long term goals anticipating future

analytical requirements shouldalso bepursued including implementation of the
symmetric compressible hydroelastic formulation anddevelopmentof general

polyhedral compressible fluid elements.
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APPENDIX A - TOUPIN'SVARIATIONAL PRINCIPLE

A complementary variational formulation of classical mechanicsutilizing

impulse quantities as generalized coordinates was introduced by Toupin in 1952

(Ref. 6). This formulation, which may be interpreted as a dynamic generalization of

the complementary energy principle of statics, has not received much attention in the

developmentof analytical methodology; it is advantageousin most analyses to utilize

displacement quantities as generalized coordinates. As in the displacement formula-
tion of mechanics, complementary counterparts of D'Alembert_s Principle, Hamilton's

Principle and the Euler-Lagrange equations are derivable as consequencesof NewtonTs
laws. The developmentpresented here closely parallels the derivation of the varia-

tional displacement formulation in mechanics.

Newton's secondlaw states that for a particle

• --.o,-

d-'t'd _ F (A-I)(m ) = 17°

with-'_'and _ representing the velocity and force vectors, respectively, and with m o

and _o taken as constants. Newton arbitrarily defined m o as the particle mass and

_o as unity thus setting the course for development of displacement oriented formula-

tions in mechanics. By arbitrarily defining m ° as unity and _o as the particle inert-

ance the course is now set for development of alternative formulations; the inertance

is simply the inverse of mass. Integration of (A-l) with respect to time results in

t
.

--" = fo --F_dt +--_r(t) _qo r(o) (A-2a)

or by taking the initial velocity as a consequence of all previously applied force

O

r(o) = ?o F dt

-00

the concise integrated statement of Newton's law is

(A-2b)

• A

--_(t) = _ o F(t) (A-2c)
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with t

^ /-F(t) = F(t) dt (A-2d)

^

The quantity F(t) is the total impulse which has brought the particle from rest to the

current velocity. The above statements also hold for aggregates of particles.

It is now postulated that a system of n particles moves such that under the
A

arbitrary virtual impulses, 6 F i,

n -;- ^ A

£ (ri- _oi Fi)" 6F i =0

i=1

(A-3)

where r'_. denotes the position vector with respect to a Newtonian reference frame.1

The above is the complementary counterpart of DtAlembert's principle. Integration

of the above expression over the time interval (to, tl) results in

tl ^ Atl n _.;. ^ n

f (r i • 6Fi) dt- f z _oi Fi" 6Fi dt = 0
t i=l t i=l

O O

(A-4)

At this point it is convenient to define the complementary kinetic energy and virtual

work functions which are

and

n A ^

Tc = 1/2 _ foi Fi " Fi (A-5a)

i=1

respectively.

n A

6W c ,_ r i 6 F., (A-5b)

i=1

The time integral of the virtual work function integrated by parts is

tl tl n X

f 6Wcdt= f 2 (_i'6Fi) dt
t t i=l

O O
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n _ A

ri " 6 Fi

i=1

tI tI .n -._ A

- f _: (ri" 6F i)dt

to to i=1

By imposing the constraints

A A

6F i (to)= 6F i (tl)= 0

the complementary virtual work function is expressible in the alternate form

(A-6a)

(A-6b)

n --_ A

6W c =- '_: (ri • 6F i)

i=l

(A-6c)

Incorporation of Eq. A-5a and Eq. A-6c into Eq. A-4 yields the statement of the

complementary Hamilton's principle

t 1

/
t

O

(6T c + 6Wc) dt = 0 (A-7)

Ifthe complementary work function, Wc, is expressible as

(A-8)

where U defined as the complementary potential energy function has the general
c

functional dependence

^ A A h

U c =U c (F 1,..., Fn, F 1,..., F n;t) (A-9)

/
and W is the remaining part of the work function best thought of as dependent on

c

externally applied displacements (or velocities) such that

6W/= n -_ A
c - £ (ri " 6 F i)

e
i=1

The complementary Lagrangian function is now designated as

=T -U
LC C C

(A-10)

(A-12)
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and the complementary form of Hamilton's principle is

t 1 t 1A A h A

6f Lc (F1,..., Fn, FI,"', Fn, t) dt+ f 6W:dt=0

t t
O O

(A-12)

In order to derive a general set of complementary Euler-Lagrange equations

(Toupin's equations) the notation of generalized impulse coordinates is introduced.

The generalized impulses are defined as those which

• Determine the dynamic configuration of the system

• May be varied arbitrarily and independently without violating the constraints

of the system.

Consider now a system of n particles for which the individual impulses are functions

of m (m < n) generalized impulses, i. e.,

A A A A

F i=F.l (Q1 '"'' Qm' t), i=l,...,n (A-13)

A

The functions F. are assumed continuous with continuous partial derivatives and the
1 A

time derivative of the total impulse F. is
1

A A A

X 6F i X 8F. A 8F.
Fi= -_--QI+...+ -_- Qm +----L

8 Q1 8 Qm 8t

Thus the complementary Lagrangian has the functional dependence

A A A h

L c = Lc (Q1 ""' Qm' Q1 '"'' Qm' t)

A

The variation of impulse, F i, is

A

_F.
A 1

6F.-

A

A 8F i A
_ __ 6Q1 +...+ _ 6Q m

_Qm

and the external complementary virtual work Eq. A-10 is expressed as

(A-14)

(A-15)

(A-16)

A 6A
= - Q1 +'" '+ Clm Qm]6w: [Clle e

(A- 17a)
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where

•qje = i=lZ_8_j " )

j=l )...) m (A-17b)

Substitution of Eq. A-15 and Eq. A-17 into Eq. A-12 results in

f qj 6%+
j=l t o 8_j

dt = 0 (A-18)

Integration by parts noting the constraints at the limits

6Qj (t o ) = Qj (t 1) =0
(A-19)

yields

m t i
F 8Lc d

dt
J=l t o

8L-_-c_ - (lie _ dt

I
= 0 (A-20a)

where the Euler-Langrange equations are the integrands

d 8Lc 8Lc

+ 61je= 0 (A-20b)
dt 8_j O_j

Application of the complementary principle to large deformation and other non-

linear problems requires a re-education of the analyst; one's physical intuition must

be reoriented towards kinetic rather than kinematic considerations. Restricting

further discussion to small deformation problems (in particular conservative small

vibration problems), the kinetic and potential energy expressions reduce to the

quadratic forms

A A

T c=T (QI"'"Qm)

_-!- m m A ^ (A-21a)
-2 ,_ £ Lij QiQj

I=1 j=l
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and

respectively.
is

X
=U (Q1 ""' Qm )Uc c

m m
1

= 2 2 _ C ijQi Qj

i=i

The matrix set of Euler-Langrange equations resulting from Eq. A-22

£
Taking the time derivative (notingthat Q = Q) the result is

(A-21b)

(A- 22a)

(L) {Q} +(C){Q}= {'qe} (A-22b)

where {Q} is the generalized force vector, (L) is the generalized inertance matrix

and (C) is the generalized flexibilitymatrix. The significance of the matrices becomes

apparent when the equations are rearranged as

where

(A- 23)

are interpreted as "complementary D'Alembert accelerations". Thus (L) is the

inverse of the generalized mass matrix (M). In the case of staticsthe kinetic energy

is null and the special equation (integratedtwice)

represents a statement of staticequilibrium; and the flexibilitymatrix (C) is identified

as the inverse of the generalized stiffnessmatrix.
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The qualities of a complementary formulation are best illustrated by a set of

simple examples.

Example 1:

Consider first the simple oscillator with base excitation, lJe,

Fig. A-1. The kinetic and strain energies are

1 A2 1 C_2
T c =_ L F , Uc =_

illustrated in

(A-26)

respectively and the complementary virtual work is

O e
(A-27)

The resulting Euler-Lagrange equation is

^ X

LF +CF= Ue (A-28)

Noting that the inertance and compliance are inverses of mass and stiffness, respec-

tively, the natural frequency is

Example 2:

Consider now the free-free system illustrated in Fig. A-2.

strain energies are

1 _2 + 1 A e) 2T c =-_ L 1 _ L 2 (F +

The kinetic and

(A- 30a)

1 C92 (A- 30b)
U c =_

A

Noting that the external impulse F e is prescribed and has no variation (_Fe = 0) the

Euler-Lagrange equation is

^ ){ A
(A-31)(L1+ L2) F +CF =-L 2 F e
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l C=--_=COMPL,ANCE

• Ue
ff fffjl

FREE BODY -

I I
F

KINETIC ENERGY: T c =½ L_ 2

A

F

_F

STRAIN ENERGY: Uc=-_CF

l A" • /k
F, Ue VIRTUAL WORK: &W C = - Ue $ F

Fig. A-1 Simple Oscillator with Base Excitation
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F
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A
F
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F
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Fig. A-2 Free-FreeSystem

A-9



Volume I

In terms of the particle masses, (M1, M2) , the inertance of the system is

h(L1 + L2) = +_ = _k]YI7TM2 ¢]
(A- 32)

which is immediately recognized as the inverse of the relative mass. Rigid body

motion singularities are automatically removed in the complementary formulation.

The complementary forcing function

A 1 A

L2F e = _ F e = U e (A-33)

is equivalent to an effective base motion input.

Example 3:

Consider the two-degree of freedom system illustrated in Fig. A-3. The kinetic

and strain energies are

1 A2 1 A A 2
T c =_-L1F 1 +-_L 2 (F 2- F 1) (A-34a)

1 /k2 1 /x2
U c =_ C1F 1 +_C 2 F 2 (A-34b)

and the Euler-Lagrange equations are

Ii I 0 F1 + LI+L2 L2 1 =X

C F2 \ L 2 L F2)

(A- 35 )

The flexibility and inertance matrices are inverses of the stiffness and mass matrices

respectively of the system when the relative displacements X 1 and (X 2 - X1) are taken

as the generalized displacements. If in the complementary formulation the net

impulses are taken as generalized coordinates, i.e.,

A A

FI'= F 1 (A- 36a)

A_ A A
F 2 = F 2 - F 1 (A-36b)
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Fig. A-3 Supported Two-Degree of Freedom System
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the kinetic and strain energies are expressed as

1 _12 "2" L2TC =-2 L1 + 1 _2 (A-37a)

1 _{2+1 A, "Uc =2"C1 2 C2 (F2 + _I_)2 (A-37b)

and the Euler-Lagrange equations are

C1+C2 CI{_1/} I_ 1 0-II_11 {:};<t + = (A-38)

_C 2 C F 2 L2J (Fd)

The above flexibilityand inertance matrices are the inverses of the stiffness

and mass matrices, respectively, of the system when the absolute displacements are

taken as generalized coordinates.

Itis interestingto note that the use of absolute impulse as a generalized coor-

dinate results in a relative displacement equivalent formulation while use of relative

(net)impulse generalized coordinates results in an absolute displacement equivalent

formulation.
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APPENDIX B - HEAT CONDUCTION - FLUID FLOW ANALOGY

The current NASTRAN hydroelastic modeling capability is limited to axi-

symmetrically shaped fluid configurations modeled with the cylindrical core and

toroidal elements defined on CFLUID2, CFLUID3 and CFLUID4 connect cards. The

possible need for a tilted liquid free surface fluid model for space shuttle external

tank analysis necessitates the use of generally configured fluid finite elements.

Tetrahedral and hexahedral finite elements would satisfy this requirement as well as

any future requirement to model general non-axisymmetric fluid geometries. The

desired general fluid elements are available in NASTRAN in the form of heat conduc-

tion elements; these may be utilized as Incompressible fluid dynamic finite elements

by implementation of the analogy presented below.

The field equation and flow boundary condition for an incompressible, inviscid

fluid undergoing small motion are:

and

V 2p = 0 in V (B-l)

A 8P
vp • n = - p_ on S (B-2)

8x n n

A

On the boundary surface (outward normal xn, n). The field equation and heat

flux boundary condition for an isotropic solid under steady state thermal loading are:

and

IF2"r = 0 in V (B-3)

A 8"/" 1
- f on S (B-4)17 -r- • n =

@x n K T n

The analogy is now immediately apparent with the following variables taking

equivalent roles :

pressure, P: temperature, T

outward normal acceleration, iin: outward normal flux/area, f

mass densityt p : inverse thermal conductivity, 1/K T

inverse
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Consider the "generalized energy" principles utilized to derive the finite

element fluid flow and heat conduction equations. The fluid "generalized potential

energy" is (Ref. 12):

Uf 1 / 1=-_- _ (VP. VP) dV (13-5)
V v

the corresponding thermal potential function is (Ref. 12):

ifU T =_- K T (V'r.V'r) dV (B-6)
V v

in the special case of an isotropic material.

The variation of outward flow potential for the fluid and the corresponding

quantity for the thermal surface potential are:

5UfB=-_Sp(1Vp)'AndS= / _PlJndS

f_ r (KV'r)"_d S = f6 7-fndS
(5UTB s s

and

respectively.

The generalized energy expressions Eqs. B-5, B-6, B-7 and B-8 form the

basis for derivation of mathematically equivalent incompressible fluid flow and

thermal finite elements. The sets of algebraic equations describing fluid dynamic

and thermal states, respectively, are

03-7)

and

(B-S)

KfijPj = -silJi (B-9)

KT. "T. = -Sif iJ
ij

The utility of fluid flow and thermal elements has just been proven to be inter-

changeable; NASTRAN is capable of modeling general incompressible fluid flow con-

figurations. The thermal elements required are defined by CTETRA, CHEXA1 and

CHEXA2 connect cards. Thermal material properties following the analogy (mass

density, p : inverse of thermal conductivity, KT ±) are specified on a MAT4 card.

(B-IO)
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